μ-Statistically Convergent Multiple Sequences in Probabilistic Normed Spaces

Rupam Haloi and Mausumi Sen

Abstract

In this article, we introduce the notions of μ-statistically convergent and μ-statistically Cauchy multiple sequences in probabilistic normed spaces (in short PN-spaces). We also give a suitable characterization for μ-statistically convergent multiple sequences in PN -spaces. Moreover, we introduce the notion of μ-statistical limit points for multiple sequences in PN -spaces, and we give a relation between μ-statistical limit points and limit points of multiple sequences in PN-spaces.

Keywords Probabilistic normed space $\cdot \mu$-statistical convergence \cdot Multiple sequence • Two-valued measure

1 Introduction

The notion of PN-space was first introduced by Šerstnev [20] in 1963. In this theory, it has been observed that these spaces are nothing but real linear spaces where the norm of a vector is a distribution function rather than just a number. Later this theory was generalized by many authors [1, 12]. The concept of statistical convergence was first developed by Steinhaus [23] as well as by Fast [8] in 1951. Later on, this theory has been investigated by many authors in recent papers [3, 5, 9-11]. Karakus [14] has extended the concept of statistical convergence to the probabilistic normed space in 2007. In the recent past, sequence spaces have been studied by various authors [21, 26, 27] from different point of view. Moreover, Tripathy et al. [28] have studied the concepts of I-limit inferior and I-limit superior of sequences in PN-space. The notion of convergence for a sequence is also considered in measure theory. In [4], Connor has extended the concept of statistical convergence, by replacing the asymptotic density with a finitely additive two-valued measure μ. Some more work can be found in [22].

[^0]The concepts of sequence space had been extended to double sequence by Pringsheim [17] in 1900. Then Hardy [13] introduced the concept of regular convergence for double sequence in 1917. In [14], Karakus has investigated the concept of statistical convergence in PN-spaces for single sequences. Similar concept for double sequences has been developed by Karakus and Demirci [15]. More works on statistically convergent double sequences in PN-spaces can be found in $[16,18]$ from different aspects. The notion of statistically convergent triple sequences defined by Orlicz function has been investigated by Datta et al. [6]. Later on, Esi and Sharma [7] have studied some paranormed sequence spaces defined by Musielak-Orlicz functions over n-normed spaces. Recently, Tripathy and Goswami [24] have introduced the notion of multiple sequences in PN-spaces, and then they have studied the statistical convergence for the same in [25]. In this paper, we investigate this concept from measure theoretic aspects.

2 Preliminaries

Throughout the paper, \mathbb{N}, \mathbb{R}, and \mathbb{R}^{+}denote the sets of natural, real, and nonnegative real numbers, respectively. Moreover, μ denotes a complete $\{0,1\}$-valued finitely additive measure defined on a field Γ of all finite subsets of \mathbb{N} and suppose that $\mu(B)=0$, if $|B|<\infty$; if $B \subset A$ and $\mu(A)=0$, then $\mu(B)=0$; and $\mu(\mathbb{N})=1$.

The definitions of distribution function and continuous t-norm can be found in [19]. Let Δ denotes the set of all distribution functions. For the definition and example of a PN-space, one may refer to [1,2].

Definition 1 ([24]) Let $(Y, M, *)$ be a PN -space. Then, we say a multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is convergent to $\xi \in Y$ in terms of probabilistic norm M, if for every $\delta>0$ and $\gamma \in(0,1)$, there is an $n_{0} \in \mathbb{N}$ such that $M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta)>1-\gamma$, for all $k_{i} \geq n_{0}$, for $i=1,2, \ldots, n$. It is denoted by $M-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$.

Definition 2 ([24]) Let $(Y, M, *)$ be a PN-space. Then, we say a multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is Cauchy in terms of probabilistic norm M, if for every $\delta>0$ and $\gamma \in(0,1)$, there is an $n_{0} \in \mathbb{N}$ such that $M_{y_{k_{1} k_{2} \ldots k_{n}}-y_{m_{1} m_{2} \ldots m_{n}}}(\delta)>1-\gamma$, for all $k_{i} \geq n_{0}$ and $m_{i} \geq n_{0}$, for $i=1,2, \ldots, n$.

3μ-Statistically Convergent Multiple Sequences in PN-Space

In this section, we introduce the following definitions and give some useful characterizations for μ-statistical convergence of multiple sequence in PN-spaces.

Definition 3 A multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ in a PN -space $(Y, M, *)$ is said to be μ-statistically null in terms of the probabilistic norm M, if for every $\delta>0$ and $\gamma \in(0,1)$, we have

$$
\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}}(\delta) \leq 1-\gamma\right\}\right)=0 .
$$

Definition 4 A multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ in a PN-space $(Y, M, *)$ is said to be μ-statistically bounded in terms of probabilistic norm M, if there exists an $\delta>0$ such that

$$
\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}}(\delta) \leq 1-\gamma\right\}\right)=0, \text { for every } \gamma \in(0,1)
$$

Definition 5 A multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ in a PN-space $(Y, M, *)$ is said to be μ-statistically convergent to $\xi \in Y$ in terms of the probabilistic norm M, if for every $\delta>0$ and $\gamma \in(0,1)$, we have

$$
\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta) \leq 1-\gamma\right\}\right)=0
$$

and we write as $\mu-\operatorname{stat}_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$.
Definition 6 A multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ in a PN-space $(Y, M, *)$ is called μ-statistically Cauchy in terms of probabilistic norm M, if for every $\delta>0$ and $\gamma \in(0,1)$, there is an $n_{0} \in \mathbb{N}$ such that

$$
\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-y_{m_{1} m_{2} \ldots m_{n}}}(\delta) \leq 1-\gamma\right\}\right)=0 .
$$

From the above definitions, we have the following two results. The proofs are obvious, so omitted.

Theorem 1 Let $(Y, M, *)$ be a probabilistic normed space. Then, for every $\gamma \in$ $(0,1)$ and $\delta>0$, the following statements are equivalent:

1. $\mu-s t a t_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$.
2. $\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta) \leq 1-\gamma\right\}\right)=0$.
3. $\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta)>1-\gamma\right\}\right)=1$.
4. $\mu-$ stat $-\lim M_{y_{k_{1} k_{2} \ldots k_{k}}-\xi}(\delta)=1$.

Corollary 1 Let $\left(Y, M\right.$, *) be a PN-space. If a multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ in $(Y, M, *)$ is μ-statistically convergent in terms of probabilistic norm M, then $\mu-$ stat $_{M}-\lim y$ is unique.

Corollary 2 Let $(Y, M, *)$ be a probabilistic normed space. If $M-\lim y_{k_{1} k_{2} \ldots k_{n}}=$ ξ, then $\mu-$ stat $_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$.

Proof Suppose $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ converges to ξ in terms of probabilistic norm M. Then, for every $\delta>0$ and $\gamma \in(0,1)$, there exists an $n_{0} \in \mathbb{N}$ such that

$$
M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta)>1-\gamma, \quad \text { for all } k_{i} \geq n_{0}, i=1,2, \ldots, n
$$

Then, the set $\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{\left.y_{k_{1} k_{2} \ldots k_{n}-\xi}(\delta) \leq 1-\gamma\right\} \text { contains at most }}\right.$ finite numbers of terms, and so we have

$$
\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta) \leq 1-\gamma\right\}\right)=0 .
$$

Consequently, $\mu-\operatorname{stat}_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$.
The converse of the Corollary 2 does not hold, in general.
Example 1 Suppose $(\mathbb{R},\|\cdot\|)$ is the space of all real numbers with the standard norm. Let $a_{1} * a_{2}=a_{1} a_{2}$ and $M_{y}(s)=\frac{s}{s+\|y\|}$, where $y \in R$ and $s \geq 0$. Then, we see that $(\mathbb{R}, M, *)$ is a probabilistic normed space. Let $K \subset \mathbb{N}^{n}$ be such that $\mu(K)=0$. We define a sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ as follows:

$$
y_{k_{1} k_{2} \ldots k_{n}}=\left\{\begin{array}{cc}
k_{1} k_{2} \ldots k_{n}, & \text { if }\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in K \tag{1}\\
0, & \text { otherwise } .
\end{array}\right.
$$

Then, one can easily verify that $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is μ-statistically convergent in terms of the probabilistic norm M. However, the sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ defined by (1) is not convergent in the space $(\mathbb{R},\|\cdot\|)$, thus we conclude that y is also not convergent in terms of the probabilistic norm M.

Theorem 2 Suppose that $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is a multiple sequence in a probabilistic normed space $(Y, M, *)$. Then $\mu-$ stat $_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$ if and only if there is an index subset $A=\left\{\left(n_{k_{1}}, n_{k_{2}}, \ldots, n_{k_{n}}\right): n_{k_{i}} \in \mathbb{N}\right\}$ of \mathbb{N}^{n} such that $\mu(A)=1$ and

$$
M-\lim _{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in A} y_{k_{1} k_{2} \ldots k_{n}}=\xi .
$$

Proof First, suppose that $\mu-$ stat $_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$. Then, for every $\delta>0$ and $s \in \mathbb{N}$, we define the following two sets:

$$
\begin{align*}
& A(s, \delta)=\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta) \leq 1-\frac{1}{s}\right\} \tag{2}\\
& B(s, \delta)=\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta)>1-\frac{1}{s}\right\} . \tag{3}
\end{align*}
$$

Then, we have $\mu(A(s, \delta))=0$ and

$$
\begin{gather*}
B(1, \delta) \supset B(2, \delta) \supset \cdots \supset B(j, \delta) \supset B(j+1, \delta) \supset \cdots \tag{4}\\
\mu(B(s, \delta))=1, \text { for } s=1,2, \ldots \tag{5}
\end{gather*}
$$

Now, we need to show that, the sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is convergent to ξ in terms of probabilistic norm M, for $\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in B(s, \delta)$. If possible, suppose that $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is not convergent to ξ in terms of the probabilistic norm M. Then, there exists $\gamma>0$ such that the set

$$
\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta) \leq 1-\gamma\right\}
$$

contains infinite number of terms. Let

$$
B(\gamma, \delta)=\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta)>1-\gamma\right\},
$$

where $\gamma>\frac{1}{s}$, for $s=1,2, \ldots$ Then $\mu(B(\gamma, \delta))=0$. But from (4), we have $B(s, \delta) \subset B(\gamma, \delta)$. Thus, we obtain $\mu(B(s, \delta))=0$, which is a contradiction to (5). Hence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is convergent to ξ in terms of the probabilistic norm M.

Conversely, we assume that there is an index subset $A=\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right): k_{i} \in\right.$ $\mathbb{N}\} \subset \mathbb{N}^{n}$ such that $\mu(A)=1$ and

$$
N-\lim _{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in A} y_{k_{1} k_{2} \ldots k_{n}}=\xi .
$$

Then, for every $\delta>0$ and $\gamma \in(0,1)$, there is an $m_{0} \in \mathbb{N}$ such that

$$
M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta)>1-\gamma, \quad \text { for } k_{i} \geq m_{0}, i=1,2, \ldots, n
$$

Now, we see that

$$
\begin{aligned}
\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right. & \left.\in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta) \leq 1-\gamma\right\} \\
& \subset \mathbb{N}^{n}-\left\{\left(k_{1\left(m_{0}+1\right)}, \ldots, k_{n\left(m_{0}+1\right)}\right),\left(k_{1\left(m_{0}+2\right)}, \ldots, k_{n\left(m_{0}+2\right)}\right), \ldots\right\} .
\end{aligned}
$$

Therefore, we have $\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-\xi}(\delta) \leq 1-\gamma\right\}\right) \leq 1-$ $1=0$. Consequently, we have $\mu-$ stat $_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\xi$.

Theorem 3 Let $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ be a multiple sequence in a $P N$-space $(Y, M, *)$. Then the following statements are equivalent:

1. y is a μ-statistically Cauchy sequence in terms of probabilistic norm M.
2. There is an index subset $A=\left\{\left(m_{k_{1}}, m_{k_{2}}, \ldots, m_{k_{n}}\right) \in \mathbb{N}^{n}: m_{k_{i}} \in \mathbb{N}\right\} \subset \mathbb{N}^{n}$ such that $\mu(A)=1$ and the subsequence $\left\{y_{m_{k_{1}} m_{k_{2}} \ldots m_{k_{n}}}\right\}_{\left(m_{k_{1}}, m_{k_{2}}, \ldots, m_{k_{n}}\right) \in A}$ is a Cauchy sequence in terms of the probabilistic norm M.

Proof The proof is easy and so omitted.
We now give some arithmetical properties of μ-statistical convergence for a multiple sequence on PN -space.

Theorem 4 Let $(Y, M, *)$ be a probabilistic normed space. Then

1. If $\mu-$ stat $_{M}-\lim x_{k_{1} k_{2} \ldots k_{n}}=\alpha$ and $\mu-\operatorname{stat}_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\beta$, then $\mu-\operatorname{stat}_{M}-\lim \left(x_{k_{1} k_{2} \ldots k_{n}}+y_{k_{1} k_{2} \ldots k_{n}}\right)=\alpha+\beta$.
2. If $\mu-$ stat $_{M}-\lim x_{k_{1} k_{2} \ldots k_{n}}=\alpha$ and $a \in \mathbb{R}$, then $\mu-$ stat $_{M}-\lim a x_{k_{1} k_{2} \ldots k_{n}}=a \alpha$.
3. If $\mu-$ stat $_{M}-\lim x_{k_{1} k_{2} \ldots k_{n}}=\alpha$ and $\mu-\operatorname{stat}_{M}-\lim y_{k_{1} k_{2} \ldots k_{n}}=\beta$, then $\mu-\operatorname{stat}_{M}-\lim \left(x_{k_{1} k_{2} \ldots k_{n}}-y_{k_{1} k_{2} \ldots k_{n}}\right)=\alpha-\beta$.

Proof The proof follows from the definition of μ-statistical convergence of a multiple sequence in PN -space itself.

4μ-Statistical Limit Points for Multiple Sequences in PN-Space

In this section, we introduce the concepts of μ-statistical limit points of multiple sequences in PN -spaces and investigate their relation with limit points of multiple sequences in PN-spaces.

Definition 7 ([24]) Let $(Y, M, *)$ be a probabilistic normed space, and let $y=$ ($y_{k_{1} k_{2} \ldots k_{n}}$) be a multiple sequence. We say that $\xi \in Y$ is a limit point of y in terms of the probabilistic norm M, if there is a subsequence of y that converge to ξ in terms of the probabilistic norm M. Let $L_{M}(y)$ denotes the set of all limit points of the multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$.

Definition 8 Let $(Y, M, *)$ be a probabilistic normed space, and let $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ be a multiple sequence. We say that $\eta \in Y$ is a μ-statistical limit point of the multiple sequence y in terms of the probabilistic norm M, if there is a set
$A=\left\{\left(k_{1}(i), k_{2}(i), \ldots, k_{n}(i)\right): k_{j}(1)<k_{j}(2)<k_{j}(3)<\ldots\right.$, for $\left.j=1,2, \ldots, n\right\} \subset \mathbb{N}^{n}$
such that $\mu(A) \neq 0$ and $M-\lim y_{k_{1}(i) k_{2}(i) \ldots k_{n}(i)}=\eta$. Let $\Lambda_{M}^{\mu}(y)$ denote the set of all $\mu-$ stat $_{M}$ - limit points of the multiple sequence $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$.

Theorem 5 Suppose $y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ is a multiple sequence in a $P N$-space $(Y, M, *)$. If $\mu-$ stat $_{M}-\lim y=L_{1}$, then $\Lambda_{M}^{\mu}(y)=\left\{L_{1}\right\}$.
Proof If possible, suppose that $\Lambda_{M}^{\mu}(y)=\left\{L_{1}, L_{2}\right\}$ such that $L_{1} \neq L_{2}$. Then there exists two sets:
$A=\left\{\left(k_{1}(i), k_{2}(i), \ldots, k_{n}(i)\right): k_{j}(1)<k_{j}(2)<k_{j}(3)<\ldots\right.$, for $\left.j=1,2, \ldots, n\right\} \subset \mathbb{N}^{n}$
$B=\left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right): u_{j}(1)<u_{j}(2)<u_{j}(3)<\ldots\right.$, for $\left.j=1,2, \ldots, n\right\} \subset \mathbb{N}^{n}$
such that $\mu(A) \neq 0, \mu(B) \neq 0$ and $M-\lim y_{k_{1}(i) k_{2}(i) \ldots k_{n}(i)}=L_{1}, M-$ $\lim y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)}=L_{2}$. Since $M-\lim y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)}=L_{2}$, so for every $\delta>0$ and $\gamma \in(0,1)$, we have

$$
\mu\left(\left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: M_{y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)}-L_{2}}(\delta) \leq 1-\gamma\right\}\right)=0 .
$$

Now, we see that

$$
\begin{aligned}
& \left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: i \in \mathbb{N}\right\} \\
& =\left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: M_{\left.y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)-L_{2}}(\delta)>1-\gamma\right\}}\right. \\
& \quad \cup\left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: M_{y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)}-L_{2}}(\delta) \leq 1-\gamma\right\}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\mu\left(\left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: M_{y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)}-L_{2}}(\delta)>1-\gamma\right\}\right) \neq 0 \tag{6}
\end{equation*}
$$

However $\mu-$ stat $_{M}-\lim y=L_{1}$ implies that for every $\delta>0$,

$$
\begin{equation*}
\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-L_{1}}(\delta) \leq 1-\gamma\right\}\right)=0 . \tag{7}
\end{equation*}
$$

Thus, we can write $\mu\left(\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-L_{1}}(\delta)>1-\gamma\right\}\right) \neq 0$. Now, for every $L_{1} \neq L_{2}$, we have

$$
\begin{aligned}
& \left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: M_{y_{u_{1}(i) u_{2}(i) \ldots, u_{n}(i)}-L_{2}}(\delta)>1-\gamma\right\} \\
& \quad \cap\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-L_{1}}(\delta)>1-\gamma\right\}=\phi .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: M_{y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)}-L_{2}}(\delta)>1-\gamma\right\} \\
& \subseteq\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: M_{y_{k_{1} k_{2} \ldots k_{n}}-L_{1}}(\delta) \leq 1-\gamma\right\},
\end{aligned}
$$

which implies that $\mu\left(\left\{\left(u_{1}(i), u_{2}(i), \ldots, u_{n}(i)\right) \in \mathbb{N}^{n}: M_{y_{u_{1}(i) u_{2}(i) \ldots u_{n}(i)}-L_{2}}(\delta)\right.\right.$ $>1-\gamma\})=0$. This contradicts the Eq. (6). Hence, we must have $\Lambda_{M}^{\mu}(y)=\left\{L_{1}\right\}$.

Acknowledgements The work of the first author has been supported by the Research Project SB/S4/MS:887/14 of SERB - Department of Science and Technology, Govt. of India.

References

1. Alsina, C., Schweizer, B., Sklar, A.: On the definition of a probabilistic normed space. Aequationes Math. 46, 91-98 (1993)
2. Asadollah, A., Nourouzi, K.: Convex sets in probabilistic normed spaces. Chaos, Solutions \& Fractals. 36, 322-328 (2008)
3. Connor, J.: The statistical and strong p-Cesàro convergence of sequences. Analysis. 8, 47-63 (1988)
4. Connor, J.: Two valued measure and summability. Analysis. 10, 373-385 (1990)
5. Connor, J.: R-type summability methods, Cauchy criterion, P-sets and statistical convergence. Proc. Amer. Math. Soc. 115, 319-327 (1992)
6. Datta, A.J., Esi, A., Tripathy, B.C.: Statistically convergent triple sequence spaces defined by Orlicz function. Journal of Mathematical Analysis. 4 (2), 16-22 (2013)
7. Esi, A., Sharma, S.K.: Some paranormed sequence spaces defined by a Musielak-Orlicz function over n-normed spaces. Konuralp Journal of Mathematics. 3 (1), 16-28 (2015)
8. Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
9. Fridy, J.A.: On Statistical convergence. Analysis. 5, 301-313 (1985)
10. Fridy, J.A., Orhan, C.: Lacunary Statistical convergence. Pacific J. Math. 160, 43-51 (1993)
11. Fridy, J.A., Orhan, C.: Lacunary statistical summability. J. Math. Anal. Appl. 173, 497-503 (1993)
12. Guillén, B., Lallena, J., Sempi, C.: Some classes of probabilistic normed spaces. Rend. Math. 17 (7), 237-252 (1997)
13. Hardy, G.H.: On the Convergence of Certain Multiple Series. Proceedings of the Cambridge Philosophical Society. 19 (3), 86-95 (1917)
14. Karakus, S.: Statistical Convergence on PN-spaces. Mathematical Communications. 12, 11-23 (2007)
15. Karakus, S., Demirci, K.: Statistical Convergence of Double Sequences on Probabilistic Normed Spaces. International Journal of Mathematics and Mathematical Sciences. (2007) https://doi.org/10.1155/2007/14737
16. Mohiuddine, S.A., Savaş, E.:, Lacunary statistically convergent double sequences in probabilistic normed spaces. Ann Univ Ferrara. 58 (2), 331-339 (2012)
17. Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen. 53 (3), 289-321 (1900)
18. Savaş, E., Mohiuddine, S.A.: $\bar{\lambda}$-statistically convergent double sequences in probabilistic normed spaces. Mathematica Slovaca. 62 (1), 99-108 (2012)
19. Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313-334 (1960)
20. Šerstnev, A.N.: On the notion of a random normed space. Dokl. Akad. Nauk. SSSR. 142 (2), 280-283 (1963)
21. Sharma, S.K., Esi, A.: Some \mathcal{I}-convergent sequence spaces defined by using sequence of moduli and n-normed space. Journal of the Egyptian Mathematical Society. 21, 29-33 (2013)
22. Sharma, S.K., Esi, A.: μ-statistical convergent double lacunary sequence spaces. Afrika Matematika. 26 (7-8), 1467-1481 (2015)
23. Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73-74 (1951)
24. Tripathy, B.C., Goswami, R.: Multiple sequences in probabilistic normed spaces. Afr. Mat. 26, 753-760 (2015)
25. Tripathy, B.C., Goswami, R.: Statistically Convergent Multiple Sequences in Probabilistic Normed Spaces. U.P.B. Sci. Bull. Series A. 78 (4), 83-94 (2016)
26. Tripathy, B.C., Sen, M., Nath, S.: I-convergence in probabilistic n-normed spaces. Soft Computing. 16 (6), 1021-1027 (2012)
27. Tripathy, B.C., Sen, M., Nath, S.: Lacunary I-convergence in probabilistic n-normed spaces. IMBIC 6th International Conference on Mathematical Sciences for Advancement of Science and Technology (MSAST 2012), December 21-23, Salt Lake City, Kolkata, India
28. Tripathy, B.C., Sen, M., Nath, S.: I-Limit Superior and I-Limit Inferior of Sequences in Probabilistic Normed Space. International Journal of Modern Mathematical Sciences. 7 (1), 1-11 (2013)

[^0]: R. Haloi • M. Sen (\triangle)

 Department of Mathematics, NIT Silchar, Silchar, Assam, India
 e-mail: rupam.haloi15@gmail.com; rupam@rs.math.student.nits.ac.in; senmausumi@gmail.com; mausumi@math.nits.ac.in

