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Abstract In this article, we introduce the notions of μ-statistically convergent and
μ-statistically Cauchy multiple sequences in probabilistic normed spaces (in short
PN-spaces). We also give a suitable characterization for μ-statistically convergent
multiple sequences in PN-spaces. Moreover, we introduce the notion of μ-statistical
limit points for multiple sequences in PN-spaces, and we give a relation between
μ-statistical limit points and limit points of multiple sequences in PN-spaces.
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1 Introduction

The notion of PN-space was first introduced by Šerstnev [20] in 1963. In this theory,
it has been observed that these spaces are nothing but real linear spaces where the
norm of a vector is a distribution function rather than just a number. Later this theory
was generalized by many authors [1, 12]. The concept of statistical convergence was
first developed by Steinhaus [23] as well as by Fast [8] in 1951. Later on, this theory
has been investigated by many authors in recent papers [3, 5, 9–11]. Karakus [14]
has extended the concept of statistical convergence to the probabilistic normed space
in 2007. In the recent past, sequence spaces have been studied by various authors
[21, 26, 27] from different point of view. Moreover, Tripathy et al. [28] have studied
the concepts of I -limit inferior and I -limit superior of sequences in PN-space.
The notion of convergence for a sequence is also considered in measure theory.
In [4], Connor has extended the concept of statistical convergence, by replacing the
asymptotic density with a finitely additive two-valued measure μ. Some more work
can be found in [22].
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The concepts of sequence space had been extended to double sequence by
Pringsheim [17] in 1900. Then Hardy [13] introduced the concept of regular
convergence for double sequence in 1917. In [14], Karakus has investigated the
concept of statistical convergence in PN-spaces for single sequences. Similar
concept for double sequences has been developed by Karakus and Demirci [15].
More works on statistically convergent double sequences in PN-spaces can be
found in [16, 18] from different aspects. The notion of statistically convergent
triple sequences defined by Orlicz function has been investigated by Datta et
al. [6]. Later on, Esi and Sharma [7] have studied some paranormed sequence
spaces defined by Musielak-Orlicz functions over n-normed spaces. Recently,
Tripathy and Goswami [24] have introduced the notion of multiple sequences
in PN-spaces, and then they have studied the statistical convergence for the
same in [25]. In this paper, we investigate this concept from measure theoretic
aspects.

2 Preliminaries

Throughout the paper, N, R, and R
+ denote the sets of natural, real, and nonnegative

real numbers, respectively. Moreover, μ denotes a complete {0, 1}-valued finitely
additive measure defined on a field Γ of all finite subsets of N and suppose that
μ(B) = 0, if |B| < ∞; if B ⊂ A and μ(A) = 0, then μ(B) = 0; and
μ(N) = 1.

The definitions of distribution function and continuous t-norm can be found
in [19]. Let Δ denotes the set of all distribution functions. For the definition and
example of a PN-space, one may refer to [1, 2].

Definition 1 ([24]) Let (Y,M, ∗) be a PN-space. Then, we say a multiple sequence
y = (yk1k2...kn) is convergent to ξ ∈ Y in terms of probabilistic norm M , if for every
δ > 0 and γ ∈ (0, 1), there is an n0 ∈ N such that Myk1k2 ...kn−ξ (δ) > 1 − γ , for all
ki ≥ n0, for i = 1, 2, . . . , n. It is denoted by M − lim yk1k2...kn = ξ.

Definition 2 ([24]) Let (Y,M, ∗) be a PN-space. Then, we say a multiple sequence
y = (yk1k2...kn) is Cauchy in terms of probabilistic norm M , if for every δ > 0 and
γ ∈ (0, 1), there is an n0 ∈ N such that Myk1k2 ...kn−ym1m2 ...mn

(δ) > 1 − γ , for all
ki ≥ n0 and mi ≥ n0, for i = 1, 2, . . . , n.

3 µ-Statistically Convergent Multiple Sequences in PN-Space

In this section, we introduce the following definitions and give some useful
characterizations for μ-statistical convergence of multiple sequence in PN-spaces.
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Definition 3 A multiple sequence y = (yk1k2...kn) in a PN-space (Y,M, ∗) is said
to be μ-statistically null in terms of the probabilistic norm M , if for every δ > 0 and
γ ∈ (0, 1), we have

μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn

(δ) ≤ 1 − γ
})

= 0.

Definition 4 A multiple sequence y = (yk1k2...kn) in a PN-space (Y,M, ∗) is said to
be μ-statistically bounded in terms of probabilistic norm M , if there exists an δ > 0
such that

μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn

(δ) ≤ 1 − γ
})

= 0, for every γ ∈ (0, 1).

Definition 5 A multiple sequence y = (yk1k2...kn) in a PN-space (Y,M, ∗) is said
to be μ-statistically convergent to ξ ∈ Y in terms of the probabilistic norm M , if for
every δ > 0 and γ ∈ (0, 1), we have

μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−ξ (δ) ≤ 1 − γ

})
= 0,

and we write as μ − statM − lim yk1k2...kn = ξ.

Definition 6 A multiple sequence y = (yk1k2...kn) in a PN-space (Y,M, ∗) is called
μ-statistically Cauchy in terms of probabilistic norm M , if for every δ > 0 and
γ ∈ (0, 1), there is an n0 ∈ N such that

μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−ym1m2 ...mn

(δ) ≤ 1 − γ
})

= 0.

From the above definitions, we have the following two results. The proofs are
obvious, so omitted.

Theorem 1 Let (Y,M, ∗) be a probabilistic normed space. Then, for every γ ∈
(0, 1) and δ > 0, the following statements are equivalent:

1. μ − statM − lim yk1k2...kn = ξ.

2. μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−ξ (δ) ≤ 1 − γ

})
= 0.

3. μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−ξ (δ) > 1 − γ

})
= 1.

4. μ − stat − lim Myk1k2 ...kk
−ξ (δ) = 1.

Corollary 1 Let (Y,M, ∗) be a PN-space. If a multiple sequence y = (yk1k2...kn)

in (Y,M, ∗) is μ-statistically convergent in terms of probabilistic norm M , then
μ − statM − lim y is unique.

Corollary 2 Let (Y,M, ∗) be a probabilistic normed space. If M − lim yk1k2...kn =
ξ , then μ − statM − lim yk1k2...kn = ξ .
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Proof Suppose y = (yk1k2...kn) converges to ξ in terms of probabilistic norm M .
Then, for every δ > 0 and γ ∈ (0, 1), there exists an n0 ∈ N such that

Myk1k2 ...kn−ξ (δ) > 1 − γ, for all ki ≥ n0, i = 1, 2, . . . , n.

Then, the set
{
(k1, k2, . . . , kn) ∈ N

n : Myk1k2 ...kn−ξ (δ) ≤ 1 − γ
}

contains at most

finite numbers of terms, and so we have

μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−ξ (δ) ≤ 1 − γ

})
= 0.

Consequently, μ − statM − lim yk1k2...kn = ξ.

The converse of the Corollary 2 does not hold, in general.

Example 1 Suppose (R, || · ||) is the space of all real numbers with the standard
norm. Let a1 ∗ a2 = a1a2 and My(s) = s

s+||y|| , where y ∈ R and s ≥ 0. Then,
we see that (R,M, ∗) is a probabilistic normed space. Let K ⊂ N

n be such that
μ(K) = 0. We define a sequence y = (yk1k2...kn) as follows:

yk1k2...kn =
{

k1k2 . . . kn, if (k1, k2, . . . , kn) ∈ K

0, otherwise.
(1)

Then, one can easily verify that y = (yk1k2...kn) is μ-statistically convergent in
terms of the probabilistic norm M . However, the sequence y = (yk1k2...kn) defined
by (1) is not convergent in the space (R, || · ||), thus we conclude that y is also not
convergent in terms of the probabilistic norm M .

Theorem 2 Suppose that y = (yk1k2...kn) is a multiple sequence in a probabilistic
normed space (Y,M, ∗). Then μ − statM − lim yk1k2...kn = ξ if and only if there is
an index subset A = {

(nk1 , nk2 , . . . , nkn) : nki
∈ N

}
of Nn such that μ(A) = 1 and

M − lim
(k1,k2,...,kn)∈A

yk1k2...kn = ξ.

Proof First, suppose that μ − statM − lim yk1k2...kn = ξ . Then, for every δ > 0 and
s ∈ N, we define the following two sets:

A(s, δ) =
{
(k1, k2, . . . , kn) ∈ N

n : Myk1k2 ...kn−ξ (δ) ≤ 1 − 1

s

}
(2)

B(s, δ) =
{
(k1, k2, . . . , kn) ∈ N

n : Myk1k2 ...kn−ξ (δ) > 1 − 1

s

}
. (3)

Then, we have μ (A(s, δ)) = 0 and

B(1, δ) ⊃ B(2, δ) ⊃ · · · ⊃ B(j, δ) ⊃ B(j + 1, δ) ⊃ . . . (4)

μ(B(s, δ)) = 1, for s = 1, 2, . . . . (5)
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Now, we need to show that, the sequence y = (yk1k2...kn) is convergent to ξ in terms
of probabilistic norm M , for (k1, k2, . . . , kn) ∈ B(s, δ). If possible, suppose that
y = (yk1k2...kn) is not convergent to ξ in terms of the probabilistic norm M . Then,
there exists γ > 0 such that the set

{
(k1, k2, . . . , kn) ∈ N

n : Myk1k2 ...kn−ξ (δ) ≤ 1 − γ
}

contains infinite number of terms. Let

B(γ, δ) =
{
(k1, k2, . . . , kn) ∈ N

n : Myk1k2 ...kn−ξ (δ) > 1 − γ
}

,

where γ > 1
s
, for s = 1, 2, . . . . Then μ (B(γ, δ)) = 0. But from (4), we have

B(s, δ) ⊂ B(γ, δ). Thus, we obtain μ(B(s, δ)) = 0, which is a contradiction to (5).
Hence y = (yk1k2...kn) is convergent to ξ in terms of the probabilistic norm M .

Conversely, we assume that there is an index subset A = {(k1, k2, . . . , kn) : ki ∈
N} ⊂ N

n such that μ(A) = 1 and

N − lim
(k1,k2,...,kn)∈A

yk1k2...kn = ξ.

Then, for every δ > 0 and γ ∈ (0, 1), there is an m0 ∈ N such that

Myk1k2 ...kn−ξ (δ) > 1 − γ, for ki ≥ m0, i = 1, 2, . . . , n.

Now, we see that

{(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−ξ (δ) ≤ 1 − γ }

⊂ N
n − {(k1(m0+1), . . . , kn(m0+1)), (k1(m0+2), . . . , kn(m0+2)), . . . }.

Therefore, we have μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−ξ (δ) ≤ 1 − γ

})
≤ 1 −

1 = 0. Consequently, we have μ − statM − lim yk1k2...kn = ξ.

Theorem 3 Let y = (yk1k2...kn) be a multiple sequence in a PN-space (Y,M, ∗).
Then the following statements are equivalent:

1. y is a μ-statistically Cauchy sequence in terms of probabilistic norm M .
2. There is an index subset A = {

(mk1,mk2 , . . . , mkn) ∈ N
n : mki

∈ N
} ⊂ N

n such

that μ(A) = 1 and the subsequence
{
ymk1 mk2 ...mkn

}
(mk1 ,mk2 ,...,mkn )∈A

is a Cauchy

sequence in terms of the probabilistic norm M .

Proof The proof is easy and so omitted.

We now give some arithmetical properties of μ-statistical convergence for a
multiple sequence on PN-space.
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Theorem 4 Let (Y,M, ∗) be a probabilistic normed space. Then

1. If μ − statM − lim xk1k2...kn = α and μ − statM − lim yk1k2...kn = β, then
μ − statM − lim(xk1k2...kn + yk1k2...kn) = α + β.

2. If μ−statM −lim xk1k2...kn = α and a ∈ R, then μ−statM −lim axk1k2...kn = aα.

3. If μ − statM − lim xk1k2...kn = α and μ − statM − lim yk1k2...kn = β, then
μ − statM − lim(xk1k2...kn − yk1k2...kn) = α − β.

Proof The proof follows from the definition of μ-statistical convergence of a
multiple sequence in PN-space itself.

4 µ-Statistical Limit Points for Multiple Sequences in
PN-Space

In this section, we introduce the concepts of μ-statistical limit points of multiple
sequences in PN-spaces and investigate their relation with limit points of multiple
sequences in PN-spaces.

Definition 7 ([24]) Let (Y,M, ∗) be a probabilistic normed space, and let y =
(yk1k2...kn) be a multiple sequence. We say that ξ ∈ Y is a limit point of y in terms
of the probabilistic norm M , if there is a subsequence of y that converge to ξ in
terms of the probabilistic norm M . Let LM(y) denotes the set of all limit points of
the multiple sequence y = (yk1k2...kn).

Definition 8 Let (Y,M, ∗) be a probabilistic normed space, and let y = (yk1k2...kn)

be a multiple sequence. We say that η ∈ Y is a μ-statistical limit point of the
multiple sequence y in terms of the probabilistic norm M , if there is a set

A={(k1(i), k2(i), . . . , kn(i)) : kj (1)<kj (2)<kj (3)< . . . , for j=1, 2, . . . , n} ⊂ N
n

such that μ(A) 	= 0 and M − lim yk1(i)k2(i)...kn(i) = η. Let Λ
μ
M(y) denote the set of

all μ − statM − limit points of the multiple sequence y = (yk1k2...kn).

Theorem 5 Suppose y = (yk1k2...kn) is a multiple sequence in a PN-space
(Y,M, ∗). If μ − statM − lim y = L1, then Λ

μ
M(y) = {L1}.

Proof If possible, suppose that Λ
μ
M(y) = {L1, L2} such that L1 	= L2. Then there

exists two sets:

A={(k1(i), k2(i), . . . , kn(i)) : kj (1)<kj (2)<kj (3)< . . . , for j=1, 2, . . . , n} ⊂ N
n

B={(u1(i), u2(i), . . . , un(i)) : uj (1)<uj (2)<uj (3)< . . . , for j=1, 2, . . . , n}⊂N
n

such that μ(A) 	= 0, μ(B) 	= 0 and M − lim yk1(i)k2(i)...kn(i) = L1, M −
lim yu1(i)u2(i)...un(i) = L2. Since M − lim yu1(i)u2(i)...un(i) = L2, so for every δ > 0
and γ ∈ (0, 1), we have

μ
({

(u1(i), u2(i), . . . , un(i)) ∈ N
n : Myu1(i)u2(i)...un(i)−L2(δ) ≤ 1 − γ

})
= 0.
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Now, we see that

{
(u1(i), u2(i), . . . , un(i)) ∈ N

n : i ∈ N
}

=
{
(u1(i), u2(i), . . . , un(i)) ∈ N

n : Myu1(i)u2(i)...un(i)−L2(δ) > 1−γ
}

∪
{
(u1(i), u2(i), . . . , un(i)) ∈ N

n : Myu1(i)u2(i)...un(i)−L2(δ) ≤ 1−γ
}

which implies that

μ
({

(u1(i), u2(i), . . . , un(i)) ∈ N
n : Myu1(i)u2(i)...un(i)−L2(δ) > 1 − γ

})
	= 0.

(6)
However μ − statM − lim y = L1 implies that for every δ > 0,

μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−L1(δ) ≤ 1 − γ

})
= 0. (7)

Thus, we can write μ
({

(k1, k2, . . . , kn) ∈ N
n : Myk1k2 ...kn−L1(δ) > 1 − γ

})
	= 0.

Now, for every L1 	= L2, we have

{
(u1(i), u2(i), . . . , un(i)) ∈ N

n : Myu1(i)u2(i)...un(i)−L2(δ) > 1 − γ
}

∩
{
(k1, k2, . . . , kn) ∈ N

n : Myk1k2 ...kn−L1(δ) > 1 − γ
}

= φ.

Therefore
{
(u1(i), u2(i), . . . , un(i)) ∈ N

n : Myu1(i)u2(i)...un(i)−L2(δ) > 1 − γ
}

⊆
{
(k1, k2, . . . , kn) ∈ N

n : Myk1k2 ...kn−L1(δ) ≤ 1 − γ
}

,

which implies that μ
({

(u1(i), u2(i), . . . , un(i)) ∈ N
n : Myu1(i)u2(i)...un(i)−L2(δ)

> 1 − γ
})

= 0. This contradicts the Eq. (6). Hence, we must have Λ
μ
M(y) = {L1}.
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