μ -Statistically Convergent Multiple Sequences in Probabilistic Normed Spaces

Rupam Haloi and Mausumi Sen

Abstract In this article, we introduce the notions of μ -statistically convergent and μ -statistically Cauchy multiple sequences in probabilistic normed spaces (in short PN-spaces). We also give a suitable characterization for μ -statistically convergent multiple sequences in PN-spaces. Moreover, we introduce the notion of μ -statistical limit points for multiple sequences in PN-spaces, and we give a relation between μ -statistical limit points and limit points of multiple sequences in PN-spaces.

Keywords Probabilistic normed space $\cdot \mu$ -statistical convergence \cdot Multiple sequence \cdot Two-valued measure

1 Introduction

The notion of PN-space was first introduced by Šerstnev [20] in 1963. In this theory, it has been observed that these spaces are nothing but real linear spaces where the norm of a vector is a distribution function rather than just a number. Later this theory was generalized by many authors [1, 12]. The concept of statistical convergence was first developed by Steinhaus [23] as well as by Fast [8] in 1951. Later on, this theory has been investigated by many authors in recent papers [3, 5, 9–11]. Karakus [14] has extended the concept of statistical convergence to the probabilistic normed space in 2007. In the recent past, sequence spaces have been studied by various authors [21, 26, 27] from different point of view. Moreover, Tripathy et al. [28] have studied the concepts of *I*-limit inferior and *I*-limit superior of sequences in PN-space. The notion of convergence for a sequence is also considered in measure theory. In [4], Connor has extended the concept of statistical convergence, by replacing the asymptotic density with a finitely additive two-valued measure μ . Some more work can be found in [22].

R. Haloi · M. Sen (🖂)

Department of Mathematics, NIT Silchar, Silchar, Assam, India e-mail: rupam.haloi15@gmail.com; rupam@rs.math.student.nits.ac.in; senmausumi@gmail.com; mausumi@math.nits.ac.in

© Springer Nature Switzerland AG 2018

V. Madhu et al. (eds.), Advances in Algebra and Analysis, Trends in Mathematics, https://doi.org/10.1007/978-3-030-01120-8_40

The concepts of sequence space had been extended to double sequence by Pringsheim [17] in 1900. Then Hardy [13] introduced the concept of regular convergence for double sequence in 1917. In [14], Karakus has investigated the concept of statistical convergence in PN-spaces for single sequences. Similar concept for double sequences has been developed by Karakus and Demirci [15]. More works on statistically convergent double sequences in PN-spaces can be found in [16, 18] from different aspects. The notion of statistically convergent triple sequences defined by Orlicz function has been investigated by Datta et al. [6]. Later on, Esi and Sharma [7] have studied some paranormed sequence spaces defined by Musielak-Orlicz functions over *n*-normed spaces. Recently, Tripathy and Goswami [24] have introduced the notion of multiple sequences in PN-spaces, and then they have studied the statistical convergence for the same in [25]. In this paper, we investigate this concept from measure theoretic aspects.

2 Preliminaries

Throughout the paper, \mathbb{N} , \mathbb{R} , and \mathbb{R}^+ denote the sets of natural, real, and nonnegative real numbers, respectively. Moreover, μ denotes a complete {0, 1}-valued finitely additive measure defined on a field Γ of all finite subsets of \mathbb{N} and suppose that $\mu(B) = 0$, if $|B| < \infty$; if $B \subset A$ and $\mu(A) = 0$, then $\mu(B) = 0$; and $\mu(\mathbb{N}) = 1$.

The definitions of distribution function and continuous *t*-norm can be found in [19]. Let Δ denotes the set of all distribution functions. For the definition and example of a PN-space, one may refer to [1, 2].

Definition 1 ([24]) Let (Y, M, *) be a PN-space. Then, we say a multiple sequence $y = (y_{k_1k_2...k_n})$ is convergent to $\xi \in Y$ in terms of probabilistic norm M, if for every $\delta > 0$ and $\gamma \in (0, 1)$, there is an $n_0 \in \mathbb{N}$ such that $M_{y_{k_1k_2...k_n}-\xi}(\delta) > 1 - \gamma$, for all $k_i \ge n_0$, for i = 1, 2, ..., n. It is denoted by $M - \lim y_{k_1k_2...k_n} = \xi$.

Definition 2 ([24]) Let (Y, M, *) be a PN-space. Then, we say a multiple sequence $y = (y_{k_1k_2...k_n})$ is Cauchy in terms of probabilistic norm M, if for every $\delta > 0$ and $\gamma \in (0, 1)$, there is an $n_0 \in \mathbb{N}$ such that $M_{y_{k_1k_2...k_n}-y_{m_1m_2...m_n}}(\delta) > 1 - \gamma$, for all $k_i \ge n_0$ and $m_i \ge n_0$, for i = 1, 2, ..., n.

3 *μ*-Statistically Convergent Multiple Sequences in PN-Space

In this section, we introduce the following definitions and give some useful characterizations for μ -statistical convergence of multiple sequence in PN-spaces.

Definition 3 A multiple sequence $y = (y_{k_1k_2...k_n})$ in a PN-space (Y, M, *) is said to be μ -statistically null in terms of the probabilistic norm M, if for every $\delta > 0$ and $\gamma \in (0, 1)$, we have

$$\mu\left(\left\{(k_1,k_2,\ldots,k_n)\in\mathbb{N}^n:M_{y_{k_1k_2\ldots k_n}}(\delta)\leq 1-\gamma\right\}\right)=0.$$

Definition 4 A multiple sequence $y = (y_{k_1k_2...k_n})$ in a PN-space (Y, M, *) is said to be μ -statistically bounded in terms of probabilistic norm M, if there exists an $\delta > 0$ such that

$$\mu\left(\left\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\dots k_n}}(\delta) \le 1 - \gamma\right\}\right) = 0, \text{ for every } \gamma \in (0, 1).$$

Definition 5 A multiple sequence $y = (y_{k_1k_2...k_n})$ in a PN-space (Y, M, *) is said to be μ -statistically convergent to $\xi \in Y$ in terms of the probabilistic norm M, if for every $\delta > 0$ and $\gamma \in (0, 1)$, we have

$$\mu\left(\left\{(k_1,k_2,\ldots,k_n)\in\mathbb{N}^n:M_{y_{k_1k_2\ldots k_n}-\xi}(\delta)\leq 1-\gamma\right\}\right)=0,$$

and we write as $\mu - stat_M - \lim y_{k_1k_2...k_n} = \xi$.

Definition 6 A multiple sequence $y = (y_{k_1k_2...k_n})$ in a PN-space (Y, M, *) is called μ -statistically Cauchy in terms of probabilistic norm M, if for every $\delta > 0$ and $\gamma \in (0, 1)$, there is an $n_0 \in \mathbb{N}$ such that

$$\mu\left(\left\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1 k_2 \dots k_n} - y_{m_1 m_2 \dots m_n}}(\delta) \le 1 - \gamma\right\}\right) = 0.$$

From the above definitions, we have the following two results. The proofs are obvious, so omitted.

Theorem 1 Let (Y, M, *) be a probabilistic normed space. Then, for every $\gamma \in (0, 1)$ and $\delta > 0$, the following statements are equivalent:

1.
$$\mu - stat_M - \lim y_{k_1k_2...k_n} = \xi$$
.
2. $\mu \left(\left\{ (k_1, k_2, ..., k_n) \in \mathbb{N}^n : M_{y_{k_1k_2...k_n} - \xi}(\delta) \le 1 - \gamma \right\} \right) = 0$.
3. $\mu \left(\left\{ (k_1, k_2, ..., k_n) \in \mathbb{N}^n : M_{y_{k_1k_2...k_n} - \xi}(\delta) > 1 - \gamma \right\} \right) = 1$.
4. $\mu - stat - \lim M_{y_{k_1k_2...k_k} - \xi}(\delta) = 1$.

Corollary 1 Let (Y, M, *) be a PN-space. If a multiple sequence $y = (y_{k_1k_2...k_n})$ in (Y, M, *) is μ -statistically convergent in terms of probabilistic norm M, then $\mu - stat_M - \lim y$ is unique.

Corollary 2 Let (Y, M, *) be a probabilistic normed space. If $M - \lim y_{k_1k_2...k_n} = \xi$, then $\mu - stat_M - \lim y_{k_1k_2...k_n} = \xi$.

Proof Suppose $y = (y_{k_1k_2...k_n})$ converges to ξ in terms of probabilistic norm M. Then, for every $\delta > 0$ and $\gamma \in (0, 1)$, there exists an $n_0 \in \mathbb{N}$ such that

$$M_{y_{k_1k_2...k_n}-\xi}(\delta) > 1-\gamma$$
, for all $k_i \ge n_0$, $i = 1, 2, ..., n$.

Then, the set $\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\dots k_n} - \xi}(\delta) \le 1 - \gamma\}$ contains at most finite numbers of terms, and so we have

$$\mu\left(\left\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\dots k_n} - \xi}(\delta) \le 1 - \gamma\right\}\right) = 0$$

Consequently, $\mu - stat_M - \lim y_{k_1k_2...k_n} = \xi$.

The converse of the Corollary 2 does not hold, in general.

Example 1 Suppose $(\mathbb{R}, || \cdot ||)$ is the space of all real numbers with the standard norm. Let $a_1 * a_2 = a_1 a_2$ and $M_y(s) = \frac{s}{s+||y||}$, where $y \in R$ and $s \ge 0$. Then, we see that $(\mathbb{R}, M, *)$ is a probabilistic normed space. Let $K \subset \mathbb{N}^n$ be such that $\mu(K) = 0$. We define a sequence $y = (y_{k_1k_2...k_n})$ as follows:

$$y_{k_1k_2...k_n} = \begin{cases} k_1k_2...k_n, & \text{if } (k_1, k_2, ..., k_n) \in K \\ 0, & \text{otherwise.} \end{cases}$$
(1)

Then, one can easily verify that $y = (y_{k_1k_2...k_n})$ is μ -statistically convergent in terms of the probabilistic norm M. However, the sequence $y = (y_{k_1k_2...k_n})$ defined by (1) is not convergent in the space (\mathbb{R} , $|| \cdot ||$), thus we conclude that y is also not convergent in terms of the probabilistic norm M.

Theorem 2 Suppose that $y = (y_{k_1k_2...k_n})$ is a multiple sequence in a probabilistic normed space (Y, M, *). Then $\mu - stat_M - \lim y_{k_1k_2...k_n} = \xi$ if and only if there is an index subset $A = \{(n_{k_1}, n_{k_2}, ..., n_{k_n}) : n_{k_i} \in \mathbb{N}\}$ of \mathbb{N}^n such that $\mu(A) = 1$ and

$$M - \lim_{(k_1, k_2, \dots, k_n) \in A} y_{k_1 k_2 \dots k_n} = \xi$$

Proof First, suppose that $\mu - stat_M - \lim y_{k_1k_2...k_n} = \xi$. Then, for every $\delta > 0$ and $s \in \mathbb{N}$, we define the following two sets:

$$A(s,\delta) = \left\{ (k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1 k_2 \dots k_n} - \xi}(\delta) \le 1 - \frac{1}{s} \right\}$$
(2)

$$B(s,\delta) = \left\{ (k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1 k_2 \dots k_n} - \xi}(\delta) > 1 - \frac{1}{s} \right\}.$$
 (3)

Then, we have $\mu(A(s, \delta)) = 0$ and

$$B(1,\delta) \supset B(2,\delta) \supset \dots \supset B(j,\delta) \supset B(j+1,\delta) \supset \dots$$
(4)

$$\mu(B(s,\delta)) = 1, \text{ for } s = 1, 2, \dots$$
 (5)

Now, we need to show that, the sequence $y = (y_{k_1k_2...k_n})$ is convergent to ξ in terms of probabilistic norm M, for $(k_1, k_2, ..., k_n) \in B(s, \delta)$. If possible, suppose that $y = (y_{k_1k_2...k_n})$ is not convergent to ξ in terms of the probabilistic norm M. Then, there exists $\gamma > 0$ such that the set

$$\left\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{\mathcal{Y}_{k_1 k_2 \dots k_n} - \xi}(\delta) \le 1 - \gamma\right\}$$

contains infinite number of terms. Let

$$B(\gamma,\delta) = \left\{ (k_1,k_2,\ldots,k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\ldots k_n} - \xi}(\delta) > 1 - \gamma \right\},\$$

where $\gamma > \frac{1}{s}$, for s = 1, 2, ... Then $\mu(B(\gamma, \delta)) = 0$. But from (4), we have $B(s, \delta) \subset B(\gamma, \delta)$. Thus, we obtain $\mu(B(s, \delta)) = 0$, which is a contradiction to (5). Hence $y = (y_{k_1k_2...k_n})$ is convergent to ξ in terms of the probabilistic norm *M*.

Conversely, we assume that there is an index subset $A = \{(k_1, k_2, ..., k_n) : k_i \in \mathbb{N}\} \subset \mathbb{N}^n$ such that $\mu(A) = 1$ and

$$N - \lim_{(k_1, k_2, \dots, k_n) \in A} y_{k_1 k_2 \dots k_n} = \xi.$$

Then, for every $\delta > 0$ and $\gamma \in (0, 1)$, there is an $m_0 \in \mathbb{N}$ such that

$$M_{y_{k_1k_2...k_n}-\xi}(\delta) > 1-\gamma, \text{ for } k_i \ge m_0, \ i = 1, 2, ..., n.$$

Now, we see that

$$\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1 k_2 \dots k_n} - \xi}(\delta) \le 1 - \gamma\} \\ \subset \mathbb{N}^n - \{(k_{1(m_0+1)}, \dots, k_{n(m_0+1)}), (k_{1(m_0+2)}, \dots, k_{n(m_0+2)}), \dots\}.$$

Therefore, we have $\mu\left(\left\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\dots k_n} - \xi}(\delta) \le 1 - \gamma\right\}\right) \le 1 - 1 = 0$. Consequently, we have $\mu - stat_M - \lim y_{k_1k_2\dots k_n} = \xi$.

Theorem 3 Let $y = (y_{k_1k_2...k_n})$ be a multiple sequence in a PN-space (Y, M, *). Then the following statements are equivalent:

- 1. y is a μ -statistically Cauchy sequence in terms of probabilistic norm M.
- 2. There is an index subset $A = \{(m_{k_1}, m_{k_2}, \dots, m_{k_n}) \in \mathbb{N}^n : m_{k_i} \in \mathbb{N}\} \subset \mathbb{N}^n$ such that $\mu(A) = 1$ and the subsequence $\{y_{m_{k_1}m_{k_2}\dots m_{k_n}}\}_{(m_{k_1}, m_{k_2}, \dots, m_{k_n}) \in A}$ is a Cauchy sequence in terms of the probabilistic norm M.

Proof The proof is easy and so omitted.

We now give some arithmetical properties of μ -statistical convergence for a multiple sequence on PN-space.

Theorem 4 Let (Y, M, *) be a probabilistic normed space. Then

- 1. If $\mu stat_M \lim x_{k_1k_2...k_n} = \alpha$ and $\mu stat_M \lim y_{k_1k_2...k_n} = \beta$, then $\mu stat_M \lim (x_{k_1k_2...k_n} + y_{k_1k_2...k_n}) = \alpha + \beta$.
- 2. If μ -stat_M-lim $x_{k_1k_2...k_n} = \alpha$ and $a \in \mathbb{R}$, then μ -stat_M-lim $ax_{k_1k_2...k_n} = a\alpha$.
- 3. If $\mu stat_M \lim x_{k_1k_2...k_n} = \alpha$ and $\mu stat_M \lim y_{k_1k_2...k_n} = \beta$, then $\mu stat_M \lim (x_{k_1k_2...k_n} y_{k_1k_2...k_n}) = \alpha \beta$.

Proof The proof follows from the definition of μ -statistical convergence of a multiple sequence in PN-space itself.

4 μ-Statistical Limit Points for Multiple Sequences in PN-Space

In this section, we introduce the concepts of μ -statistical limit points of multiple sequences in PN-spaces and investigate their relation with limit points of multiple sequences in PN-spaces.

Definition 7 ([24]) Let (Y, M, *) be a probabilistic normed space, and let $y = (y_{k_1k_2...k_n})$ be a multiple sequence. We say that $\xi \in Y$ is a limit point of y in terms of the probabilistic norm M, if there is a subsequence of y that converge to ξ in terms of the probabilistic norm M. Let $L_M(y)$ denotes the set of all limit points of the multiple sequence $y = (y_{k_1k_2...k_n})$.

Definition 8 Let (Y, M, *) be a probabilistic normed space, and let $y = (y_{k_1k_2...k_n})$ be a multiple sequence. We say that $\eta \in Y$ is a μ -statistical limit point of the multiple sequence y in terms of the probabilistic norm M, if there is a set

$$A = \{(k_1(i), k_2(i), \dots, k_n(i)) : k_j(1) < k_j(2) < k_j(3) < \dots, \text{ for } j = 1, 2, \dots, n\} \subset \mathbb{N}^n$$

such that $\mu(A) \neq 0$ and $M - \lim y_{k_1(i)k_2(i)\dots k_n(i)} = \eta$. Let $\Lambda_M^{\mu}(y)$ denote the set of all $\mu - stat_M - limit$ points of the multiple sequence $y = (y_{k_1k_2\dots k_n})$.

Theorem 5 Suppose $y = (y_{k_1k_2...k_n})$ is a multiple sequence in a PN-space (Y, M, *). If $\mu - stat_M - \lim y = L_1$, then $\Lambda^{\mu}_M(y) = \{L_1\}$.

Proof If possible, suppose that $\Lambda_M^{\mu}(y) = \{L_1, L_2\}$ such that $L_1 \neq L_2$. Then there exists two sets:

$$A = \{ (k_1(i), k_2(i), \dots, k_n(i)) : k_j(1) < k_j(2) < k_j(3) < \dots, \text{ for } j = 1, 2, \dots, n \} \subset \mathbb{N}^n \\ B = \{ (u_1(i), u_2(i), \dots, u_n(i)) : u_j(1) < u_j(2) < u_j(3) < \dots, \text{ for } j = 1, 2, \dots, n \} \subset \mathbb{N}^n \}$$

such that $\mu(A) \neq 0$, $\mu(B) \neq 0$ and $M - \lim y_{k_1(i)k_2(i)...k_n(i)} = L_1$, $M - \lim y_{u_1(i)u_2(i)...u_n(i)} = L_2$. Since $M - \lim y_{u_1(i)u_2(i)...u_n(i)} = L_2$, so for every $\delta > 0$ and $\gamma \in (0, 1)$, we have

$$\mu\left(\left\{(u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : M_{y_{u_1(i)u_2(i)\dots u_n(i)} - L_2}(\delta) \le 1 - \gamma\right\}\right) = 0.$$

Now, we see that

$$\{ (u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : i \in \mathbb{N} \}$$

$$= \left\{ (u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : M_{y_{u_1(i)u_2(i)\dots u_n(i)} - L_2}(\delta) > 1 - \gamma \right\}$$

$$\cup \left\{ (u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : M_{y_{u_1(i)u_2(i)\dots u_n(i)} - L_2}(\delta) \le 1 - \gamma \right\}$$

which implies that

$$\mu\left(\left\{(u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : M_{y_{u_1(i)u_2(i)\dots u_n(i)} - L_2}(\delta) > 1 - \gamma\right\}\right) \neq 0.$$
(6)

However $\mu - stat_M - \lim y = L_1$ implies that for every $\delta > 0$,

$$\mu\left(\left\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1 k_2 \dots k_n} - L_1}(\delta) \le 1 - \gamma\right\}\right) = 0.$$
(7)

Thus, we can write $\mu\left(\left\{(k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\dots k_n} - L_1}(\delta) > 1 - \gamma\right\}\right) \neq 0.$ Now, for every $L_1 \neq L_2$, we have

$$\left\{ (u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : M_{y_{u_1(i)u_2(i)\dots u_n(i)} - L_2}(\delta) > 1 - \gamma \right\}$$
$$\cap \left\{ (k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\dots k_n} - L_1}(\delta) > 1 - \gamma \right\} = \phi.$$

Therefore

$$\left\{ (u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : M_{y_{u_1(i)u_2(i)\dots u_n(i)} - L_2}(\delta) > 1 - \gamma \right\}$$
$$\subseteq \left\{ (k_1, k_2, \dots, k_n) \in \mathbb{N}^n : M_{y_{k_1k_2\dots k_n} - L_1}(\delta) \le 1 - \gamma \right\},$$

which implies that $\mu\left(\left\{(u_1(i), u_2(i), \dots, u_n(i)) \in \mathbb{N}^n : M_{y_{u_1(i)u_2(i)\dots u_n(i)}-L_2}(\delta) > 1-\gamma\right\}\right) = 0$. This contradicts the Eq. (6). Hence, we must have $\Lambda_M^{\mu}(y) = \{L_1\}$.

Acknowledgements The work of the first author has been supported by the Research Project SB/S4/MS:887/14 of SERB - Department of Science and Technology, Govt. of India.

References

- 1. Alsina, C., Schweizer, B., Sklar, A.: On the definition of a probabilistic normed space. Aequationes Math. **46**, 91–98 (1993)
- Asadollah, A., Nourouzi, K.: Convex sets in probabilistic normed spaces. Chaos, Solutions & Fractals. 36, 322–328 (2008)

- 3. Connor, J.: The statistical and strong *p*-Cesàro convergence of sequences. Analysis. **8**, 47–63 (1988)
- 4. Connor, J.: Two valued measure and summability. Analysis. 10, 373-385 (1990)
- Connor, J.: R-type summability methods, Cauchy criterion, P-sets and statistical convergence. Proc. Amer. Math. Soc. 115, 319–327 (1992)
- 6. Datta, A.J., Esi, A., Tripathy, B.C.: Statistically convergent triple sequence spaces defined by Orlicz function. Journal of Mathematical Analysis. **4** (2), 16–22 (2013)
- 7. Esi, A., Sharma, S.K.: Some paranormed sequence spaces defined by a Musielak-Orlicz function over *n*-normed spaces. Konural p Journal of Mathematics. **3** (1), 16–28 (2015)
- 8. Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)
- 9. Fridy, J.A.: On Statistical convergence. Analysis. 5, 301–313 (1985)
- 10. Fridy, J.A., Orhan, C.: Lacunary Statistical convergence. Pacific J. Math. 160, 43-51 (1993)
- 11. Fridy, J.A., Orhan, C.: Lacunary statistical summability. J. Math. Anal. Appl. 173, 497–503 (1993)
- Guillén, B., Lallena, J., Sempi, C.: Some classes of probabilistic normed spaces. Rend. Math. 17 (7), 237–252 (1997)
- 13. Hardy, G.H.: On the Convergence of Certain Multiple Series. Proceedings of the Cambridge Philosophical Society. **19** (3), 86–95 (1917)
- Karakus, S.: Statistical Convergence on PN-spaces. Mathematical Communications. 12, 11–23 (2007)
- Karakus, S., Demirci, K.: Statistical Convergence of Double Sequences on Probabilistic Normed Spaces. International Journal of Mathematics and Mathematical Sciences. (2007) https://doi.org/10.1155/2007/14737
- Mohiuddine, S.A., Savaş, E.:, Lacunary statistically convergent double sequences in probabilistic normed spaces. Ann Univ Ferrara. 58 (2), 331–339 (2012)
- Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen.
 53 (3), 289–321 (1900)
- Savaş, E., Mohiuddine, S.A.: λ-statistically convergent double sequences in probabilistic normed spaces. Mathematica Slovaca. 62 (1), 99–108 (2012)
- 19. Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313-334 (1960)
- Šerstnev, A.N.: On the notion of a random normed space. Dokl. Akad. Nauk. SSSR. 142 (2), 280–283 (1963)
- Sharma, S.K., Esi, A.: Some *I*-convergent sequence spaces defined by using sequence of moduli and *n*-normed space. Journal of the Egyptian Mathematical Society. 21, 29–33 (2013)
- Sharma, S.K., Esi, A.: μ-statistical convergent double lacunary sequence spaces. Afrika Matematika. 26 (7–8), 1467–1481 (2015)
- Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951)
- Tripathy, B.C., Goswami, R.: Multiple sequences in probabilistic normed spaces. Afr. Mat. 26, 753–760 (2015)
- Tripathy, B.C., Goswami, R.: Statistically Convergent Multiple Sequences in Probabilistic Normed Spaces. U.P.B. Sci. Bull. Series A. 78 (4), 83–94 (2016)
- 26. Tripathy, B.C., Sen, M., Nath, S.: *I*-convergence in probabilistic *n*-normed spaces. Soft Computing. **16** (6), 1021–1027 (2012)
- Tripathy, B.C., Sen, M., Nath, S.: Lacunary *I*-convergence in probabilistic *n*-normed spaces. IMBIC 6th International Conference on Mathematical Sciences for Advancement of Science and Technology (MSAST 2012), December 21–23, Salt Lake City, Kolkata, India
- Tripathy, B.C., Sen, M., Nath, S.: *I*-Limit Superior and *I*-Limit Inferior of Sequences in Probabilistic Normed Space. International Journal of Modern Mathematical Sciences. 7 (1), 1–11 (2013)